Before you flex your superpowers, you have to deal with the kryptonite.
You have to accept it.

Before you deal with the kryptonite, you have to accept it.
POSTER KRYPTONITE
APPLAUSE FOR OUR EXAMPLES.
POSTER KRYPTONITE

Abstract*
Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking in which interference is a property of the underlying process being carried out on the network.

INTRODUCTION

Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neuronal regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation insofar as there are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a typology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How then can we model such a flow? Our proposition is to model continuous walks on the network insofar as interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common centrality measures.

Degree Centrality: \[\text{deg}(i) = \sum_{j=1}^{n} a_{ij} = (Ae)_i \]

Katz Centrality: \[k(i) = \sum_{j=1}^{n} \alpha(\beta A)^k a_{ij} \]

Closest Centrality: \[C(i) = \left[\frac{1}{\beta} d(i, i') \right]^{-1} \]

THEORY

\[A^t = PD^{t-2} \sum_{i=1}^{N} \lambda_i^{t-1} u_i u_i^t + \sum_{i=1}^{N} \lambda_i^{t-1} u_i u_i^t \]

and where \((-1)^t = e^{\pi i / 2}\). We then can express every entry of \(A^t\) as,

\[\varphi_{ij}(x_i) = \sum_{k=1}^{N} \lambda_i^{k-1} u_i^k + e^{\pi i x} \sum_{k=1}^{N} \lambda_i^{k-1} u_i^k \]

where \(\lambda^\wedge(0)\) is the multiset of all positive eigenvalues not including zero and \(\lambda^\wedge\) is the multiset of all negative eigenvalues. Since we are guaranteed at least one negative eigenvalue \(\varphi_{ij}(x_i)\) is complex always.\[\]

Theorem 1. The Pairwise Walk Function (PWF), \(\varphi_{ij}\), is an element of Hilbert Space.

Proof: \[\int \varphi_{ij}(x_i) \varphi_{jk}(x_j) dx \]

On the right-hand side of the integral we have two indeterminates of the form \(\frac{d}{dx}\) when when \(\lambda_a \to 1\) and when \(\lambda_{b} \to 0\). Upon a change of variable the limit is,

\[\lim_{\lambda_{a} \to 1} = \frac{d}{dx} = 1 \]

\[\lim_{\lambda_{b} \to 0} = e^{\pi i x} = 0 \]

The integral then converges over the interval and we have the desired result, \(\varphi_{ij} \in \mathcal{H}\). Below we plot the real and imaginary parts of several PWF’s.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. Below we give Degree Interference and Closeness-Interference, where \(C\) is the sum of the columns of the PWF matrix.

\[\lambda_{ij} = \sum_{k=1}^{N} A_k^{ij} \]

\[\sum_{k=1}^{N} A_k^{ij} \sum_{k=1}^{N} A_k^{jk} \]

Figure 3. An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference starts the peripheral vertices closer than the core vertices. We may attribute this to destructive interference among the core vertices.

CONCLUSION

We’ve shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property. In this manner we may view graphs as lower-dimensional discrete representations of Hilbert space. To the authors knowledge this is the first explicit relationship between combinatorics and Hilbert space. Using this to our advantage we’ve generalized several common centrality measures to account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of quantum random walks in 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in Hilbert space there exists a unique vector in a closed subspace of Hilbert space, which minimizes their distance, we may utilize PWFs as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear Hermitian operators corresponding to graph parameters just as we have linear Hermitian operators that correspond to physical observables in quantum mechanics.

ACKNOWLEDGEMENTS

I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

REFERENCES

Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@Gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure whose assignments are a ranking in which interference is a property of the underlying process being carried out on the network.

INTRODUCTION

Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neurological regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation insofar as there are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a typology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How then can we model such a flow? Our proposition is to model continuous walks on the network insofar as interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common centrality measures.

Degree Centrality:

\[\text{deg}(i) = \sum_{j=1}^{n} a_{ij} = (Ae)_i, \]

Katz Centrality:

\[k(i) = \sum_{j=1}^{n} a_{ij} (\sum_{k=1}^{n} a_{jk})^{-(s-1)} \]

Closest Centrality:

\[c(i) = \left[\frac{\sum_{j=1}^{n} d(i,j)}{n} \right]^{-1} \]

THEORY

\[A^k = PD^{-1}F^{-1} \left(\sum_{i=1}^{n} \lambda_i^{-(k-1)} u_i u_i^T + \varepsilon e e^T + \sum_{j=1}^{n} \lambda_j^{-(k-1)} u_j u_j^T \right) \]

and where \((-1)^{k(\bar{r})}\lambda_i^{r} \text{exp}(\varepsilon)\). We then can express every entry of \(A^k \) as,

\[\varphi_{jk}(x,k) = \sum_{i=1}^{n} \lambda_i^{k} u_i^k + \varepsilon \sum_{i=1}^{n} \lambda_i^{k} u_j^k \]

where \(\lambda_i \) is the multiset of all positive eigenvalues not including zero and \(\lambda_i \) is the multiset of all negative eigenvalues. Since we are guaranteed at least one negative eigenvalue, \(\varphi_{jk}(x,k) \) is complex always \(\sqrt{\lambda_i} \).

Theorem 1: The Pairwise Walk Function (PWF), \(\varphi_{jk} \), is an element of Hilbert Space.

Proof:

\[\int (\sin x) \varphi_{jk}(x,k) dx = \int (\sin x) \left(\sum_{i=1}^{n} \lambda_i^{k} u_i^k + \varepsilon \sum_{i=1}^{n} \lambda_i^{k} u_j^k \right) dx \]

On the right-hand side of the integral we have two independently bounded terms with when \(x \rightarrow \pi \), \(k \rightarrow \infty \). Upon a change of variable the limit is,

\[\frac{\sin x}{x} \rightarrow 1 \text{ as } x \rightarrow 0 \]

The integral then converges over the interval and we have the desired result, \(\varphi_{jk} \in \mathcal{H} \). Below we plot the real and imaginary parts of several PWF’s.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. Below we give Degree-Interference and Closeness-Interference, where \(\mathcal{C} \) is the sum of the columns of the PWF matrix.

\[\mathcal{C} = \left[\int \left(\sum_{i=1}^{n} \lambda_i^{k} u_i^k + \varepsilon \sum_{i=1}^{n} \lambda_i^{k} u_j^k \right) dx \right] \]

We’ve shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property in this manner we way view graphs as lower-dimensional discrete representations of hilbert space. To the authors knowledge this is the first explicit relationship between combinatorics and hilbert space. Using this to our advantage we’ve generalized several common centrality measures for account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of quantum random walks in 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in hilbert space there exists a unique vector in a closed subspace of hilbert space, which minimizes their distance, we may utilize PWF’s as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian operators corresponding to graph parameters just as we have linear hermitian operators that correspond to physical observables in quantum mechanics.

CONCLUSION

I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

ACKNOWLEDGEMENTS

REFERENCES

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking in which interference is a property of the underlying process being carried out on the network.
Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking in which interference is a property of the underlying process being carried out on the network.

INTRODUCTION

Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neurological regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation insofar as there are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a typology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How can we model such a flow? Our proposition is to model continuous walks on the network insofar as interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common centrality measures.

Degree Centrality:
\[\text{deg}(i) = \sum_{j=1}^{n} a_{ij} = (Ae)_i \]

Katz Centrality:
\[k(i) = \sum_{j=1}^{n} a^{ij}(A^T)^i_j = \left((I - A)I^T \right)^{-1} \]

Closeness Centrality:
\[c(i) = \frac{1}{\sum_{j=1}^{n} d(i,j)} \]

THEORY

\(A^\prime = PD^{-1}P^T \quad \text{and where } (-)^\prime = L^T(-L) \).

Theorem 1: The Pairwise Walk Function (PWF), \(\varphi_{jk} \), is an element of Hilbert Space.

On the right-hand side of the integral we have two indeterminates of the form \(\mathcal{H} \) when when \(\mu_n \rightarrow 1 \) and when \(\mu_n \lambda_{i=k} \rightarrow 1 \). Upon a change of variable the limit is

\[\int_0^1 \left(e^{\mu_n \lambda_{i=k}} - 1 \right) \frac{d\mu}{\lambda_{i=k}} \]
POSTER KRYPTONITE

Abstract*
Background images
Time-of-Flight Mass Spectrometry (TOFMS) is a technique for determining particle mass using a temporal data spectrum. Charged particles are accelerated through an electric potential, with higher resulting particle speeds corresponding to particles with lower mass. A particle's time of arrival is measured and used to determine the particle mass.

Mission: Data from density and composition studies of Earth's upper atmosphere are used to improve atmospheric models. The Miniaturized Time-of-Flight Mass Spectrometer will be designed for a CubeSat bus and will be capable of providing data with better temporal and spatial resolution than previous instruments flown on larger satellites. This design aims to leverage full-scale TOF resolution techniques to achieve mass resolution comparable to larger instruments.

Search for Optimal Dimensions: Optimization functions written in MATLAB calculated maximum drift region lengths given a set of dimensions [reflectron depth, spacing between accelerators, accelerator voltages], calculated flight times for 60 AMU, and evaluated each dimension set based on a spacing parameter.

\[
\text{spacing} = \frac{\text{width of 60 AMU peak [seconds]}}{\text{distance between 59 and 60 AMU peaks [seconds]}}
\]

Outcomes of the dimension search suggested larger dimensions for the reflectron depth [55 mm reflectron design pictured].

BNG Driver Design: Alternating wires of the BNG may be driven using a high-speed high-side/low-side boost driver and high voltage, high speed MOSFET switches. Electrical parameters from a previously fabricated BNG were used to simulate the BNG and evaluate the driver performance.

SPICE simulations of the BNG driver show ion pulse widths less than 35 nanoseconds. Power consumption will be evaluated and further improvements in rise time and pulse width may be possible.

MCP Signal Collector Design: Storage of data from a Constant Fraction Discriminator (CFD) or Analog-to-Digital Converter (ADC) in a high speed register to be transferred at larger intervals to an onboard computer will balance timing requirements for signal sampling and power consumption of onboard computers.

Flight time estimations and SIMION simulation results show similar resolving power. Flight time estimation was run using a 30 nanosecond Time of Birth (TOB) range. SIMION simulations were run for a 30 nanosecond TOB range and a 0.42 mm starting position range (based on a 50 nanosecond gate pulse and thermal velocity distribution of the particles).

SIMION was used to evaluate reflectron electrode potential sets and electrode shapes.
Abstract*

Background images

Flanking logos
Background
• Approximately 10 million tons of Waste Vegetable Oils are generated annually in the United States of America alone [1].
• Waste Vegetable Oils (WVO) are potential sources for fuels and hydrogen gas production [2].
• Hypothesis: Pyrolysis of WVOs using red mud produces hydrogen and low oxygenated fuels.

Importance
• Dual production of hydrocarbons and hydrogen.
• Reutilization of waste materials.

Chemistry of WVO
Triglyceride \(\rightarrow\) Fatty acids + Glycerol

Objectives
• Investigate the effect of red mud on the pyrolysis of model compounds.
• Study the influence of red mud on the pyrolysis of WVO.
• Determine the optimum conditions for the production of hydrogen and hydrocarbons are produced from WVO.

Materials
• Model compounds: Glycerol, oleic acid, linoleic acid, trilaurin and triolein.
• Extraction solvents: Tetrahydrofuran and hexane.
• Catalyst: Red mud.
• Waste vegetable oil.

Expected Results
• Reaction mechanisms of pyrolytic products using red mud catalyst.

Triglyceride model

Method
• Non-catalytic pyrolysis of model compounds and at 390°C, 420°C and 450°C.
• Catalytic pyrolysis at different percentages.
• Analysis of pyrolytic products.

Conclusions
• Pyrolysis of WVO will reduce dependence on fossil fuels.
• Production of H2 – an essential industrial commodity.

References
Background

- Approximately 10 million tons of Waste Vegetable Oils are generated annually in the United States of America alone [1].
- Waste Vegetable Oils (WVO) are potential sources for fuels and hydrogen gas production [2].
- Hypothesis: Pyrolysis of WVOs using red mud produces hydrogen and low oxygenated fuels.

Importance

- Dual production of hydrocarbons and hydrogen.
- Reutilization of waste materials.

Chemistry of WVO

- **Triglyceride**
- **fatty acids + glycerol**

Objectives

- Investigate the effect of red mud on the pyrolysis of model compounds.
- Study the influence of red mud on the pyrolysis of WVO.
- Determine the optimum conditions for the production of hydrogen and hydrocarbons are produced from WVO.

Materials

- Model compounds: Glycerol, oleic acid, linoleic acid, trilaurin and triolein.
- Extraction solvents: Tetrahydrofuran and hexane.
- Catalyst: Red mud.
- Waste vegetable oil.

Experimental Setup

Expected Results

- Reaction mechanisms of pyrolytic products using red mud catalyst.

Conclusions

- Pyrolysis of WVO will reduce dependence on fossil fuels.
- Production of H2 – an essential industrial commodity.

References

Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@Gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking in which interference is a property of the underlying process being carried out on the network.

INTRODUCTION

Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neurological regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation so that there are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a typology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How then can we model such a flow? Our proposition is to model continuous walks on the network so that interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common centrality measures.

Degree Centrality: \(\deg(i) = \sum_{j=1}^{n} A_{ij} \)

Katz Centrality: \(k(i) = \sum_{j=1}^{n} \sum_{k=1}^{n} k(i,j) \)

Closest Centrality: \(C(i) = \left[\sum_{j=1}^{n} d(i,j)^{-1} \right]^{-1} \)

THEORY

\(A^2 = P D P^{-1} + \sum_{k=1}^{n} A_k A_k \)

where \(k(i,j) \), \(\lambda_k \), and \(A_k \) are the eigenvalues and eigenvectors of \(A \). We then can express every entry of \(A^2 \) as,

\[\rho(i,j) = \sum_{k=1}^{n} \lambda_k A_k \]

where \(\lambda_k \) is the sum of all positive eigenvalues not including zero and \(\lambda_k \) is the multiset of all negative eigenvalues. Since we are guaranteed at least one negative eigenvalue \(\rho(i,j) \) is complex always.

Theorem 1: The Pairwise Work Function (PWF), \(\rho(i,j) \), is an element of Hilbert Space.

Proof:

On the right-hand side of the integral we have two indeterminates of the form \(\sum_{k=1}^{n} \).

The integral then converges over the interval and we have the desired result, \(\rho(i,j) \in \mathcal{H} \).

Below we plot the real and imaginary parts of several PWF's.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. We give Degree Interference and Closeness Interference, where \(i \) is the sum of the columns of the PWF matrix.

CONCLUSION

We've shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property. In this manner we may view graphs as lower-dimensional discrete representations of Hilbert space. To the authors knowledge this is the first explicit relationship between combinatorics and Hilbert space. Using this to our advantage we've generalized several common centrality measures to account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of quantum random walks in 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in Hilbert space there exists a unique vector in a closed subspace of Hilbert space, which minimizes their distance, we may utilize PWFs as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian operators corresponding to graph parameters just as we have linear hermitian operators that correspond to physical observables in quantum mechanics.

ACKNOWLEDGEMENTS

I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

REFERENCES

Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD

¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. There is thus a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking to which interference is a property of the underlying process being carried out on the network.

INTRODUCTION

Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neurological regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation insofar as they are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a topology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How then can we model such a flow? Our proposition is to model continuous walks on the network insofar as interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common centrality measures.

Degree Centrality:

\[\deg(i) = \sum_{j=1}^{N} a_{ij} = (Ae)_i \]

Katz Centrality:

\[k(i) = \sum_{j=1}^{N} a^{ij}(A^j) = \left((I - (1-\eta)A)^{-1} - I \right) e_i \]

Closeness Centrality:

\[c(i) = \frac{1}{\sum_{j=1}^{N} d(i,j)} \]

Theorem 1.1: The power-law function \(f(i) = i^\alpha \), \(\alpha \in \mathbb{R} \), is the adjacency matrix produces complex functions as the entries.

Proof: Let \(A \) be the adjacency matrix of a simple nonempty graph. \(A \) is a traceless symmetric matrix, \(\text{Tr}[A] = \text{Tr}[A^T] = 0 \). Since \(A \) is symmetric it is always diagonalizable, we then have \(A = (P\text{P}^T)^{-1} \) where \(P \) are the eigenvectors collected as a matrix and \(D \) is the diagonal matrix consisting of the eigenvalues of \(A \). We then have \(\text{Tr}[A] = \text{Tr}[(P\text{P}^T)^{-1}] = \text{Tr}[(D\text{D}^T)^{-1}] = \text{Tr}(D) = \sum_{i=1}^{N} \lambda_i = 0 \). Since the graph is nonempty and the sum of the eigenvalues is zero we are therefore guaranteed to have at least one negative eigenvalue. The function of a matrix can be expressed as \(f(A) = P(D^a)P^T \), where the spectral decomposition is.

THEORY

\[A^2 = PD^2P^{-1} - \sum_{i,a} n_i a_i P_{ia} = \sum_{i,a} n_i a_i P_{ia} \]

and where \((-\lambda_i)^a = \lambda_i e^{i2\pi a}\). We then can express every entry of \(A^2 \) as,

\[\varphi_{jk}(l_1,l_2) = \sum_{\mathcal{L}} \lambda_i^{l_1} u_{jL} + v_{kl} \sum_{\mathcal{L}} \lambda_i^{l_2} u_{kL} \]

where \(\lambda^\mathcal{L}_i(\mathcal{L}) \) is the multiset of all positive eigenvalues not including zero and \(\lambda^-\mathcal{L}_i \) is the multiset of all negative eigenvalues. Since we are guaranteed at least one negative eigenvalue \(\varphi_{jk}(l_1,l_2) \) is complex always.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. Below we give Degree-Interference and Closeness-Interference, where \(\mathcal{L} \) is the sum of the columns of the \(\text{PWF} \).

\[D_{ij} = \left(\sum_{\mathcal{L}} \mathcal{L}_i \mathcal{L}_j \right)^{-1} \]

\[C_{ij} = \left(\sum_{\mathcal{L}} \mathcal{L}_i \mathcal{L}_j \right)^{-1} \]

CONCLUSION

We've shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property in this manner we way view graphs as lower-dimensional discrete representations of Hilbert space. To the authors knowledge this is the first explicit relationship between combinatorics and Hilbert space. Using this to our advantage we've generalized several common centralities measures to account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of quantum random walks in 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in Hilbert space there exists a unique vector in a closed subspace of Hilbert space, which minimizes their distance, we may utilize PWFs as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian operators corresponding to graph parameters just as we have linear hermitian operators that correspond to physical observables in quantum mechanics.

ACKNOWLEDGEMENTS

I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

REFERENCES

A Study on the Effect between Commercial Space Solar Cells and the Antennas Integrated on Their Cover Glass

Taha Shahvirdi Dizaj Yekan, Reyhan Baktur
Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA
taha.shahvirdi@aggiemail.usu.edu, reyhan.baktur@usu.edu

Abstract

A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.

Introduction

One of the biggest issues of cube satellites is the limited surface area, that makes it challenging to place antenna on cube satellites without competing for the surface area with solar cells. One effective method can be integrate antenna with solar cells.

In the past, two types of this kind of integration has been performed at Utah State University.

As antennas integrated on top of solar cells offers lots of advantages, it is important to determine the effect of solar cells on the antenna.

Fabrication

AF32 and plexiglass have been used as cover glass. The height of AF32 and plexiglass is 1.3 mm and 1 mm respectively. The design frequency is 4.9 GHz. Also, high conductive silver based ink was printed on cover glass multiple times so that the conductor is thicker than the skin depth.

Design Overview

A complete modular fashion design and real world material by using triple junction space solar cells, has been assembled. In this fixture each solar cell has its own cover glass and antenna is printed on cover glass.

Three sets of measurement have been done for each substrate.

- Antenna on cover glass without solar cells
- Antenna on cover glass above solar cells
- Antenna on cover glass above active solar cells under illumination

Results

AF32 Cover Glass Results:

<table>
<thead>
<tr>
<th>Antenna Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch Gain (dBi)</td>
<td>6.1</td>
<td>4.9</td>
<td>6.5</td>
<td>5.84</td>
<td>6.1</td>
</tr>
<tr>
<td>Patch on Solar Cell Gain (dBi)</td>
<td>3.12</td>
<td>3.32</td>
<td>3.37</td>
<td>3.37</td>
<td>3.32</td>
</tr>
<tr>
<td>Gain Difference (dB)</td>
<td>2.98</td>
<td>1.58</td>
<td>3.1</td>
<td>2.47</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Plexiglass Cover Glass Results:

| G_{no_solar} = 5 dBi |
| G_{solar} = 2.4 dBi |

Conclusion

Solar cells decrease 3 dB antenna gain without disturbing radiation pattern. Also, solar cells affect impedance of feedline and antenna. Finally, the gain of patch antenna on solar cell is independent of solar cell loading and activeness.

References

A Study on the Effect between Commercial Space Solar Cells and the Antennas Integrated on Their Cover Glass
Taha Shahvirdi Dizaj Yekan, Reyhan Baktur
Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA
taha.shahvirdi@aggiemail.usu.edu, reyhan.baktur@usu.edu

Abstract
- A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.

Introduction
- One of the biggest issues of cube satellites is the limited surface area, that makes it challenging to place antenna on cube satellites without competing for the surface area with solar cells. One effective method can be integrate antenna with solar cells.
- In the past, two types of this kind of integration has been performed at Utah State University.
- As antennas integrated on top of solar cells offers lots of advantages, it is important to determine the effect of solar cells on the antenna.

Fabrication
- AF32 and plexiglass have been used as cover glass. The height of AF32 and plexiglass is 1.3 mm and 1 mm respectively. The design frequency is 4.9 GHz. Also, high conductive silver based ink was printed on cover glass multiple times so that the conductor is thicker than the skin depth.

Results
- AF32 Cover Glass Results:
 - Antenna Number | 1 | 2 | 3 | 4 | 5
 - Gain (dBi) | 6.1 | 4.9 | 6.5 | 5.84 | 6.1
 - Gain Difference (dB) | 2.98 | 1.58 | 3.1 | 2.47 | 2.78
- Plexiglass Cover Glass Results:
 - $G_{\text{solar}} = 5 \text{ dBi}$
 - $G_{\text{no_solar}} = 2.4 \text{ dBi}$

Conclusion
- Solar cells decrease 3 dB antenna gain without disturbing radiation pattern. Also, solar cells affect impedance of feedline and antenna. Finally, the gain of patch antenna on solar cell is independent of solar cell loading and activeness.

References
I. Introduction

Lor min eum facseiat. Voluptur rem ius quiatissi morolor hicim apicim quate re dem aut es qui nimir sunt utaspellab iedererum Quatus.

pilquis doluptasi ne se sim evel ius quid qunt volupta tundisstrum atibus vid min rehendae nobis doluptatur smquiss vel qd quossent vit omni quodis quam aut doloreped que cus, volupta solore lab idicil int resinulpa a corerion non plandia corbeaie paritatem faceper estendit maxim audae et, isque consed magna nissitatet eum, est il enim nitate ra nos acite paritur res dolor aliqii to et dolut precipimpor am volest, sit apit eaque et, tem lacea nectarorero vel ium volores sim faciati te erchit harum exquisiduntia quaes quas atus.

Aliqui offici cuptas explit que dolorem es deliam as qui conectatis remposi ulparitat ut exeris porendi vellet deluptaqu omnis dolup mil etur aut apia nonsequi edition sequibusam quianin re minciis moditatam ipsum que voluptrue mint, occae. Ita quibus expelt licimus, sa apit quodis maxim simolup taerernam harchicid ento vidpriet que eum reritas doluptas aut alic te volor acum

moditatam ipsum que voluptrue mint, occae. Ita quibus expelt licimus, sa apit quodis maxim

Table 1- A simple way to display numbers and figures

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Col. 2</th>
<th>Col. 3</th>
<th>Col. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em restrum</td>
<td>25</td>
<td>60</td>
<td>80.543</td>
</tr>
<tr>
<td>Lor min eum</td>
<td>34</td>
<td>09</td>
<td>89.431</td>
</tr>
<tr>
<td>Aliqui offici cuptas</td>
<td>9</td>
<td>~4.5</td>
<td>12.045</td>
</tr>
<tr>
<td>Pliquis doluptas</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

II. Methods

Em restrum aut qui aut exceptas as ut et lat quiaqu dolorem aut laut aspelia ab iepihis iliaut velia es quatur as voluptatissin poreini si con repudit inum imn rem vernati untemo es aut re expit, volorlo molore officit fuccassum, id mod molorroro most maio.

Nam ipiendis est resto maiorepro demolare ni si auda volo volutat altiu? Borrorum quis re reer ro quae correms quaspe net ant et rem quis eritatiunte nobiscis pissaedempos estium ut adioresquiti tem qii impos del im fuga. Undiorrovodi iuri deriaquas aut aut manyvellab ipilet quatemq viaeprat. Orrorecae ofificto moditatior rem

III. Results

Em restrum aut qui aut exceptas as ut et lat quiaqu dolorem aut laut aspelia ab iepihis iliaut velia es quatur as voluptatissin poreini si con repudit inum imn rem vernati untemo es aut re expit, volorlo molore officit fuccassum, id mod molorroro most maio.

Nam ipiendis est resto maiorepro demolare ni si auda volo volutat altiu? Borrorum quis re reer ro quae correms quaspe net ant et rem quis eritatiunte nobiscis pissaedempos estium ut adioresquiti tem qii impos del im fuga. Undiorrovodi iuri deriaquas aut aut manyvellab ipilet quatemq viaeprat.

IV. Conclusions

Minvell ibuae ezerum dolorenes et ut ut eost audiitistas ea custis aut imos ad quis prorpepra vit as quanda poritarab ab ius es nimir et accus sam, sequi voloropores dolorae provide conest, tem expella uidentc ape odicab incie volendii gentembo luptassum eum rerisicte entem ium adit veltapaside quaerna

Tiasperast doluptatet fugit fat exeris erirbus erfero ommmos syncia deluptaquix sedisitum exccerpedis que voloreria pero exeretne mol OPERETUS sequam es et que es sus ent et a et lam, ius ius es et que ex et alipu vel eunque volorest, ulluptas a quaturit remegueta ex eum solorum autem as et volorrest quis vita commihi unt.
I. Introduction

Lor min eum facsetiat. Voluptur rem ius quiatiss molorum hicim apicim quate re dem aut es qui nims sunt utaspell ider erum quatos.

pli quis doluptasi ne se sim evel ius quid quunt volputa tundistraume atibus vin mid renhe uae nobis doluptaur sumquis vel id quossent vit omni quodis quam aut doloreped que cus, volupta solore lab idicul int resineopia a corerion non plandia corbeitate paritatem faceper estendit maxim audae et, isque consed magna nisi satet eum, est il enim nitate ra nos acie pariaru ter dolor aliquio to et dolut preicipmor am volest, sit apit eaque et, tem lacea nestectorero vel ium volores sim faciati te erchit harum eaquidantia quas que atus.

Aliqui offici cupitas explit que dolorem es deliam as qui conectatis rempossi ulpariat ut eceris porendi veliit delulptaqu omnis dolut mil etur aut apia nonsequi oditio sequibusam quainian re minciis moditatem ipsum que volupturiae mint, occae. Ita quiusb expelt licimus, sa apit quodis maxim simolup taerenam harchic endo vidpiet que eum reritas doluptas aut alic te volor accum

moditatem ipsum que volupturiae mint, occae. Ita quibus expelt licimus, sa apit quodis maxim

The 1st is

II. Methods

Em restrum aut qui aut exceptas as ut et lat quiaqui dolorem aut laut aspena ab ipienih illaut velia es quatuar as voluptatis sin poreur si con repudit inum inim rem vernati untemo es aut re explit, volorlo molore officit faccsum, id mod molorroro most maio.

Nam ipiendi est resto maiorepro demolare ni si auda volo volutat atiiur? Borrorum quis re rerro quae corum quaspe net ant et rem quis eritutnate nobisci pissendempos estum ut adioresquem tem qui impos del im fuga. Undiorrovoldi iuri deriatquas aut aut minvellab ipitit quatemq uiaeprat. Orroreaca officio moditator rem

III. Results

Em restrum aut qui aut exceptas as ut et lat quiaqui dolorem aut laut aspena ab ipienih illaut velia es quatuar as voluptatis sin poreur si con repudit inum inim rem vernati untemo es aut re explit, volorlo molore officit faccsum, id mod molorroro most maio.

Nam ipiendi est resto maiorepro demolare ni si auda volo volutat atiiur? Borrorum quis re rerro quae corum quaspe net ant et rem quis eritutnate nobisci pissendempos estum ut adioresquem tem qui impos del im fuga. Undiorrovoldi iuri deriatquas aut aut minvellab ipitit quatemq uiaeprat.

IV. Conclusions

Minvell iubuae eserum dolorenes et ut ut eost audiitastia ea custis aut imos ad quis proprea vit as quanda poritar ab ius es nimus et accus sam, sequi volororpores dolorea provide conest, tem expella udicient ape odicab incte volendi gentemo luptassum eum erticiate entem ium adit velitas pes quaerma

Tiasperastet doluptatet fugitatt exeris earis seribus erfiero ommos sincta delluptaqu sedium exerscpesia que volorleri pero exernate molorepetus sequam es et que es ses ent a et et lam, ius ius es et que ex et aliqui vel eunque vololest, ullupates a quartur reremquates ex eum solorum aumue as et volorest quis vita cmmihit unt.
POSTER KRYPTONITE

Abstract*
Background images
Flanking logos
Mailing addresses
A Study on the Effect between Commercial Space Solar Cells and the Antennas Integrated on Their Cover Glass

Taha Shahvirdi Dizaj Yekan, Reyhan Baktur
Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA
taha.shahvirdi@aggiemail.usu.edu, reyhan.baktur@usu.edu

Abstract
A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.

Introduction
One of the biggest issues of cube satellites is the limited surface area, that makes it challenging to place antenna on cube satellites without competing for the surface area with solar cells. One effective method can be integrate antenna with solar cells.
In the past, two types of this kind of integration has been performed at Utah State University.
As antennas integrated on top of solar cells offers lots of advantages, it is important to determine the effect of solar cells on the antenna.

Design Overview
A complete modular fashion design and real world material by using triple junction space solar cells, has been assembled. In this fixture each solar cell has its own cover glass and antenna is printed on cover glass.
Three sets of measurement have been done for each substrate.
- Antenna on cover glass without solar cells
- Antenna on cover glass above solar cells
- Antenna on cover glass above active solar cells under illumination

Fabrication
AF32 and plexiglass have been used as cover glass. The height of AF32 and plexiglass is 1.3 mm and 1 mm respectively. The design frequency is 4.9 GHz. Also, high conductive silver based ink was printed on cover glass multiple times so that the conductor is thicker than the skin depth.

Results
AF32 Cover Glass Results:

<table>
<thead>
<tr>
<th>Antenna Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch Gain (dBi)</td>
<td>6.1</td>
<td>4.9</td>
<td>6.5</td>
<td>5.84</td>
<td>6.1</td>
</tr>
<tr>
<td>Patch on Solar Cell Gain (dBi)</td>
<td>3.12</td>
<td>3.32</td>
<td>3.37</td>
<td>3.37</td>
<td>3.32</td>
</tr>
<tr>
<td>Gain Difference (dB)</td>
<td>2.98</td>
<td>1.58</td>
<td>3.1</td>
<td>2.47</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Plexiglass Cover Glass Results:

Conclusion
Solar cells decrease 3 dB antenna gain without disturbing radiation pattern. Also, solar cells affect impedance of feedline and antenna. Finally, the gain of patch antenna on solar cell is independent of solar cell loading and activeness.

References
A Study on the Effect between Commercial Space Solar Cells and the Antennas Integrated on Their Cover Glass

Taha Shahvirdi Dizaj Yekan, Reyhan Baktur

Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA
taha.shahvirdi@aggiemail.usu.edu, reyhan.baktur@usu.edu

Abstract

- A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.

Introduction

- One of the biggest issues of cube satellites is the limited surface area, that makes it challenging to place antenna on cube satellites without competing for the surface area with solar cells. One effective method can be integrate antenna with solar cells.
- In the past, two types of this kind of integration has been performed at Utah State University.
- As antennas integrated on top of solar cells offers lots of advantages, it is important to determine the effect of solar cells on the antenna.

Design Overview

- A complete modular fashion design and real world material by using triple junction space solar cells, has been assembled. In this fixture each solar cell has its own cover glass and antenna is printed on cover glass.
- Three sets of measurement have been done for each substrate.
 - Antenna on cover glass without solar cells
 - Antenna on cover glass above solar cells
 - Antenna on cover glass above active solar cells under illumination

Fabrication

- AF32 and plexiglass have been used as cover glass. The height of AF32 and plexiglass is 1.3 mm and 1 mm respectively. The design frequency is 4.9 GHz. Also, high conductive silver based ink was printed on cover glass multiple times so that the conductor is thicker than the skin depth.

Results

- Three sets of measurement have been done for each substrate.
- Patch Gain (dB): 6.1, 4.9, 6.5, 5.84, 6.1
- Gain Difference (dB): 2.98, 1.58, 3.1, 2.47, 2.78

Conclusion

- Solar cells decrease 3 dB antenna gain without disturbing radiation pattern. Also, solar cells affect impedance of feedline and antenna. Finally, the gain of patch antenna on solar cell is independent of solar cell loading and activeness.

References

A Study on the Effect between Commercial Space Solar Cells and the Antennas Integrated on Their Cover Glass

Taha Shahvirdi Dizaj Yekan, Reyhan Baktur

Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, USA
taha.shahvirdi@aggiemail.usu.edu, reyhan.baktur@usu.edu

Abstract

- A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.

Introduction

- One of the biggest issues of cube satellites is the limited surface area, that makes it challenging to place antenna on cube satellites without competing for the surface area with solar cells. One effective method can be integrate antenna with solar cells.
- In the past, two types of this kind of integration has been performed at Utah State University.
- As antennas integrated on top of solar cells offers lots of advantages, it is important to determine the effect of solar cells on the antenna.

Design Overview

- A complete modular fashion design and real world material by using triple junction space solar cells, has been assembled. In this fixture each solar cell has its own cover glass and antenna is printed on cover glass.
- Three sets of measurement have been done for each substrate.
 - Antenna on cover glass without solar cells
 - Antenna on cover glass above solar cells
 - Antenna on cover glass above active solar cells under illumination

Fabrication

- AF32 and plexiglass have been used as cover glass. The height of AF32 and plexiglass is 1.3 mm and 1 mm respectively. The design frequency is 4.9 GHz. Also, high conductive silver based ink was printed on cover glass multiple times so that the conductor is thicker than the skin depth.

Results

AF32 Cover Glass Results:

<table>
<thead>
<tr>
<th>Antenna Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch Gain (dB)</td>
<td>6.1</td>
<td>4.9</td>
<td>6.5</td>
<td>5.84</td>
<td>6.1</td>
</tr>
<tr>
<td>Patch on Solar Cell Gain (dB)</td>
<td>3.12</td>
<td>3.32</td>
<td>3.37</td>
<td>3.37</td>
<td>3.32</td>
</tr>
<tr>
<td>Gain Difference (dB)</td>
<td>2.98</td>
<td>1.58</td>
<td>3.1</td>
<td>2.47</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Plexiglass Cover Glass Results:

- Solar cells decrease 3 dB antenna gain without disturbing radiation pattern. Also, solar cells affect impedance of feedline and antenna. Finally, the gain of patch antenna on solar cell is independent of solar cell loading and activeness.

Conclusion

- A study to determine how commercial space solar cells affect the functionality of the antenna integrated on top of solar cells has been performed. The measured results show that solar cell affects the antenna gain and decreases it by approximately 3 dB at 5GHz. In addition, the pattern of the antenna was not affected significantly by solar cells whether when they were illuminated and terminated with different loads.
Abstract*
Background images
Flanking logos
Mailing addresses
Drop shadows and bevels
Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz¹, David Peak¹, PhD
¹Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@Gmail.com

ABSTRACT

Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking in which interference is a property of the underlying process being carried out on the network.

THEORY

\[A^* = P(D^{-1})A, \]

and where \((-X)^+ = \lambda^* X^{+\lambda^*} \). We then can express every entry of \(A^* \) as,

\[\varphi_{ij}(x) = \sum_{i,j \in \mathbb{N}_0} \lambda_i^j u_{ij} + \phi^{\text{zeros}} \sum_{i,j \in \mathbb{N}_0} \lambda_i^j u_{ij} \]

where \(\lambda^\gamma \alpha \) is the multiset of all positive eigenvalues not including zero and \(\lambda^* \) is the multiset of all negative eigenvalues. Since we are guaranteed at least one negative eigenvalue \(\varphi_{ij}(x) \) is complex always.

Theorem 1. The Pairwise Walk Function (PWF), \(\varphi_{ij} \), is an element of Hilbert Space.

Proof: \[
\sum_{i,j \in \mathbb{N}_0} \lambda_i^j u_{ij}\]

On the right-hand side of the integral we have two indeterminates of the form \(\frac{1}{x} \) when \(\lambda i \to 1 \) and \(\lambda j \to 1 \). Upon a change of variable the limit is,

\[\lim_{x \to 1} \frac{\ln(\lambda i) - 1}{\ln(\lambda j) - 1} = L \]

The integral then converges over the interval and we have the desired result, \(\varphi_{ij} \in \mathcal{H} \). Below we plot the real and imaginary parts of several PWF’s.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. Below we give Degree-Interference and Closeness-Interference, where \(c \) is the sum of the columns of the PWF matrix.

\[D_i = \sum_{j \in \mathbb{N}_0} \phi_{ij}(x)^2 \]

\[C_i = \sum_{i,j \in \mathbb{N}_0} \phi_{ij}(x)^2 \]

Figure 3: An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference marks the peripheral vertices closer than the core vertices. We may attribute this to destructive interference among the core vertices.

CONCLUSION

We’ve shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property. In this manner we may view graphs as lower-dimensional discrete representations of Hilbert space. To the authors knowledge this is the first explicit relationship between combinitorics and Hilbert space. Using this to our advantage we’ve generalized several common centrality measures to account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of random walks on 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in Hilbert space there exists a unique vector in a closest subspace of Hilbert space, which minimizes their distance, we may utilize PWFs as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian operators corresponding to graph parameters just as we have linear hermitian operators that correspond to physical observables in quantum mechanics.

ACKNOWLEDGEMENTS

I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

REFERENCES

Centrality Measures of Graphs utilizing Continuous Walks in Hilbert Space

Jarod Benowitz1, David Peak1, PhD

1Utah State University, Physics Department, UT 84321, Email: JarodPBenowitz@gmail.com

ABSTRACT
Centrality is most commonly thought of as a measure in which we assign a ranking of the vertices from most important to least important. The importance of a vertex is relative to the underlying process being carried out on the network. This is why there is a diverse amount of centrality measures addressing many such processes. We propose a measure that assigns a ranking to which interference is a property of the underlying process being carried out on the network.

INTRODUCTION
Networks are perhaps one of the most ubiquitous structures in nature. They arise for example in cellular biology connecting genes and proteins, in neuroscience connecting neurological regions of the brain, in sociology connecting the interactions of people, and recently in quantum computing. The analysis of the underlying topology of these discrete structures has thus gained widespread attention. Likewise, there has been a significant focus on designing measures to assess certain topological features of a network by assigning quantitative values to the nodes. These quantitative values have a subtle interpretation insofar as they are implicit assumptions of the underlying process being carried out on the network.

Borgatti has identified a typology of flow processes with specific trajectories that use trails, geodesics, paths, or walks. In this framework the flow has a specific type of transmission corresponding to some concrete application. Borgatti gives examples such as used goods, currency, infections, and gossip. Suppose we want to model a flow process in which the flow may interfere with itself. This interference may be the result of collisions in the network where oppositely oriented flows may annihilate. How then can we model such a flow? Our proposition is to model continuous walks on the network insofar as interference becomes an emergent property.

Definition: Centrality is a measure in which the nodes of a network are assigned a ranking with respect to an implicit assumption of the flow characteristics of the network. Below we give several examples of common-centrality measures.

Degree Centrality: \[
\text{deg}(i) = \sum_{j=1}^{N} a_{ij} = (\mathcal{A}e)_i
\]

Katz Centrality: \[
k(i) = \sum_{j=1}^{N} a^{k-1}(\mathcal{A}^k)_j = \left((I-\alpha\mathcal{A})^{-1} - I\right)e)_i
\]

Closeness Centrality: \[
c(i) = \frac{\sum_i}{\sum_j d(i,j)}^{-1}
\]

THEORY

Lemma 1.1: The power-law function \(f(x) = x^\epsilon, \epsilon \in \mathbb{R} \) of the adjacency matrix produces complex functions as the entries.

Proof: Let \(\mathcal{A} \) be the adjacency matrix of a simple nonempty graph. \(\mathcal{A} \) is a traceless symmetric matrix, \(\text{Tr}[\mathcal{A}] = \langle \mathcal{A}, \mathcal{A} \rangle = 0 \). Since \(\mathcal{A} \) is symmetric it is always diagonalizable, we then have \(\mathcal{A} = P\mathbf{\Lambda}P^{-1} \) where \(P \) are the eigenvectors collected as a matrix and \(\mathbf{\Lambda} \) is the diagonal matrix consisting of the eigenvalues of \(\mathcal{A} \). We then have \(\text{Tr}[\mathcal{A}] = \text{Tr}[P\mathbf{\Lambda}P^{-1}] = \text{Tr}(\mathbf{\Lambda}) = \sum \lambda_j = 0 \). Since the graph is nonempty and the sum of the eigenvalues is zero we are therefore guaranteed to have at least one negative eigenvalue. The function of a matrix can be expressed as \(f(\mathcal{A}) = P^{-1}f(\mathbf{\Lambda})P \), where the spectral decomposition is.

\[A^\epsilon = P\mathbf{\Lambda}^\epsilon P^{-1} - \sum_{k=1}^N \lambda_i^\epsilon u_i u_j = \sum_{k=1}^N \lambda_i^\epsilon u_k \]

where \((-\lambda)^\epsilon = \lambda^\epsilon e^{i\epsilon\pi/2}\). We then can express every entry of \(A^\epsilon \) as,

\[\varphi_{jk}(\epsilon, x) = \sum_{\epsilon \in \mathbb{R}} \lambda_i^\epsilon u_i + e^{i\epsilon\pi/2} \sum_{\epsilon \in \mathbb{R}} \lambda_j^\epsilon u_j \]

Theorem 1: The Pairwise Walk Function (PWF), \(\varphi_{jk} \), is an element of Hilbert Space.

Proof: \[
\int \varphi_{jk}(\epsilon, x) \varphi_{jk}(\epsilon', x) dx = \int \left(\sum_{\epsilon \in \mathbb{R}} \lambda_i^\epsilon u_i + e^{i\epsilon\pi/2} \sum_{\epsilon \in \mathbb{R}} \lambda_j^\epsilon u_j \right) \left(\sum_{\epsilon' \in \mathbb{R}} \lambda_i^{\epsilon'} u_i + e^{i\epsilon'\pi/2} \sum_{\epsilon' \in \mathbb{R}} \lambda_j^{\epsilon'} u_j \right) dx
\]

On the right-hand side of the integral we have two indeterminates of the form \(i^p \) when when \(\lambda_i \to 1 \) and when \(\lambda_j \to 1 \). Upon a change of variable the limit is,

\[
\lim_{\lambda_j \to 1} \frac{a^\epsilon - 1}{\ln(\lambda_j)} = \frac{a^\epsilon - 1}{\ln(1)} \leq 0
\]

The integral then converges over the interval and we have the desired result, \(\varphi_{jk} \in \mathcal{H}_\epsilon \). Below we plot the real and imaginary parts of several PWF’s.

RESULTS

Using the previous theorem we may now define a unique class of centrality measures that live in Hilbert Space. Moreover, we may generalize common centrality measures to account for the additional property of flow self-interference. Below we give Degree, Interference and Closeness-Interference, where \(\epsilon \) is the sum of the columns of the PWF matrix.

\[D_{ij} = \int \left| \varphi_{ij}(\epsilon, x) \right|^2 dx = \left(\sum_{\epsilon \in \mathbb{R}} \lambda_i^\epsilon u_i + e^{i\epsilon\pi/2} \sum_{\epsilon \in \mathbb{R}} \lambda_j^\epsilon u_j \right)^2 \]

\[C_{ij} = \left| \sum_{\epsilon \in \mathbb{R}} \int \varphi_{ij}(\epsilon, x) \varphi_{ij}(\epsilon, x) dx \right| \]

Figure 1. An inverse relationship between Closeness and Closeness-Interference. Closeness-Interference out the peripheral vertices closer than the core vertices. We may attribute this to destructive interference among the core vertices.

CONCLUSION

We’ve shown that when we allow continuous processes to occur on discrete structures interference becomes an emergent property. In this manner we may view graphs as lower-dimensional discrete representations of hilbert space. To the authors knowledge this is the first explicit relationship between combinactorics and hilbert space. Using this to our advantage we’ve generalized several common centrality measures to account for flow self-interference. Furthermore, these measures may be used for the development of new and novel quantum algorithms. Likewise, we saw an interesting relationship between numerical simulations of quantum random walks in 1D with the PWF for the path graph. Keeping the Distance Minimizer theorem in mind, which states that for all vectors in hilbert space there exists a unique vector in a closed subspace of hilbert space, which minimizes their distance, we may utilize PWFs as approximations to quantum random walks. Finally, an intriguing prospect is whether or not we can construct linear hermitian operators corresponding to graph parameters just as we have linear hermitian operators that correspond to physical observables in quantum mechanics.

ACKNOWLEDGEMENTS
I thank Dr. David Brown for his constructive criticism and referee report of the paper. I also thank the Fall 2014 Graph Theory class for their constructive criticism.

REFERENCES
Centrality Measures
Centrality Measures

Space
POSTER KRYPTONITE

Abstract*

Background images

Flanking logos

Mailing addresses

Drop shadows and bevels